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Abstract. We study the propagation of electromagnetic wave in piezoelectric period-doubling superlattices
with using the generalized 4 × 4 transfer matrix method, and the dynamics of electromagnetic wave and
acoustic wave is treated on equal footing. The band-gap structure trifurcates, which is understood within
the framework of perturbation theory under periodic boundary condition. The uncoupled phononic branch
of field distributions is Bloch-wave-like. For the coupled polaritonic branch, the lattice-like field distribu-
tions, for which Thue-Morse sequence is famous, also manifest in this piezoelectric period-doubling system
and coexist with critical states. They can be characterized as extended if the superlattice size considered is
large enough. In fact, our study suggests that such lattice-like field distributions are common phenomena
in piezoelectric superlattices irrespective of lattice types and depend only on the frequency and domain
widths, they reflect the intrinsic symmetry of the transfer matrices for the particular domain setting and
frequency.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation – 62.30.+d Mechanical and
elastic waves; vibrations – 78.66.-w Optical properties of specific thin films

Ever since the experimental discovery of quasicrystal
phase in an Al-Mn alloy with icosahedral symmetry [1],
much attention has been attracted by quasicrystals, a
unique type of structure, which lacks the translational
symmetry but possesses certain orientational order. As
the quasicrystal lattice structure in low dimension can
be viewed as a projected pattern of the periodic lattice
structure in higher dimension, a point-like Bragg diffrac-
tion arises as a natural result of such projection the-
ory. The structural ordering of quasicrystals lies at the
boundary between the translationally invariant crystals
and random glassy materials. Much research work has
been carried out in the past twenty years, among them
the one dimensional model systems described by the Fi-
bonacci sequences have received the most attention [2–5]
since they contain the basic ingredients of quasicrystals
and are relatively easy to deal with. Fibonacci system is
famous for its Cantor-set spectrum (self-similarity) and
critical eigenstates. One type of deterministically disor-
dered system, Thue-Morse sequence, which is neither pe-
riodic, random nor quasiperiodic, is notable for its ex-
tended states (lattice-like field distributions) [6,7]. An-
other type of deterministically disordered system, period-
doubling sequence, sharing common characteristics with
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both Fibonacci sequence (the spectra are Cantor-sets) and
Thue-Morse sequence (their Fourier spectra are singular
continuous), is also of great interest for its features [8]
from theoretical point of view. Up to now, much work has
been devoted to the electronic [9–11], vibrational [12,13],
photonic [14–17], plasmon- polaritonic [18] properties in
period-doubling systems, and all the above systems ex-
cept the last concern only one degree of freedom. Little
work has been done for phonon-polaritonic properties in
piezoelectric period-doubling superlattices, which is to be
studied in this paper and involves the coupling between
photon and phonon.

In a periodic system, the spectrum is absolutely con-
tinuous and all the states are extended. The point of view
that the spectrum of a disordered system has point sin-
gularities and all the states should be localized was pre-
vailing. But as we nowadays know, correlated disorder can
produce extended electronic states in one dimensional dis-
ordered system due to the existence of certain type of short
range clustering effect among the atoms [19,20]. Such kind
of dimer effect is also responsible for the extended elec-
tronic states in quasiperiodic copper-mean chain [21,22]
and period-doubling lattice [11]. Although there are no
dimers obviously in Thue-Morse sequence, extended elec-
tronic states also appear in this system, which was con-
firmed numerically by Ryu et al. [6] and understood by



180 The European Physical Journal B

Fig. 1. The schematic diagram of a period-doubling piezoelec-
tric superlattice. Domains’ polarizations are along ±z-axis, the
electric field and vibrational displacement are taken as x-axis.

another kind of correlated disorder (clustering effect) [7].
In piezoelectric period-doubling superlattices to be dis-
cussed in this paper, extended phonon-polaritonic states
also show up but can not be explained by the previ-
ous dimer effect because the extended states are actually
lattice-like, nevertheless they can be explained with the
similar mechanism taking place in Thue-Morse sequences.
Our numerical as well as analytic calculations show that
the lattice-like field distributions are a common feature
of any sequence made of piezoelectric material and they
result from the intrinsic properties of the corresponding
transfer matrices for the particularly chosen frequencies.

In this paper, we consider the propagation of the
electromagnetic wave through the piezoelectric super-
lattices with period-doubling sequences, the 4th-order
period-doubling superlattice is illustrated in Figure 1, and
the samples can be prepared with electric-field poling
method [23]. The positively and negatively polarized do-
mains with thickness L± are the two building blocks A
and B, these building blocks are then arranged accord-
ing to the period-doubling sequence. One simplest way to
generate a period-doubling sequence is to follow the suc-
cessive substitution A → AB, B → AA. Repeated substi-
tution gives the following sequence: A → AB → ABAA →
ABAAABAB → ABAAABABABAAABAA → . . . The
lth-order period-doubling sequence contains N = 2l

blocks and the general recursive relations for the lth or-
der are: Sl = Sl−1Sl−2Sl−2. In the piezoelectric period-
doubling superlattices, we shall address the following two
physical issues: (1) the branching rules of band-gap struc-
ture, which are not explored in previously studied period-
doubling systems [9–18]; (2) the coexistence of lattice-like
extended polaritonic states and critical states. Although
periodic extended states are found in the period-doubling
chain of the on-site model, nonperiodic (not lattice-like)
extended states are found in the mixed model of the elec-
tronic systems studied previously [11] and in dielectric
systems lattice-like extended states only appear at com-
pletely transparent frequencies, the lattice-like polaritonic
extended states at frequencies corresponding to the pass-
band for every order and critical states at all the low band-
gap edges still have their special features in the piezoelec-
tric period-doubling superlattice studied in this paper.

To maximize the coupling between photons and
phonons in piezoelectric superlattices, one needs to have
a setting which corresponds to the largest component of
piezoelectric tensor. Figure 1 is such a setting for LiNbO3,
both electric field Ex(z, t) and lattice displacement ux(z, t)

are in x-axis, the full dynamics of the system is described
by the following coupled equation set [24]

(
ωL

2πcs

)2

Ēx(z̄, ω) = −α
∂2

∂z̄2
Ēx(z̄, ω)

− βθ(z̄)
∂2

∂z̄2

[
θ(z̄)Ēx(z̄, ω)

]
+ βθ(z̄)

∂3

∂z̄3
ūx(z̄, ω), (1a)

(
ωL

2πcs

)2

ūx(z̄, ω) = − ∂2

∂z̄2
ūx(z̄, ω) +

∂

∂z̄

[
θ(z̄)Ēx(z̄, ω)

]
.

(1b)
The above equation set is written in a dimensionless
form, the scaled variables and functions are defined as
z̄ = 2πz/L, ūx(z̄, ω) = 2πux(z, ω)/L, and Ēx(z̄, ω) =
|d′15(z)|Ex(z, ω). L = L+ + L− and θ(z̄) = ±1 identi-
fies the left and right polarized domains. cs = 1/

√
ρs′55

is transverse sound velocity of ferroelectric media. The
two dimensionless material parameters are α = c2/ε̄c2

s,
β = d

′2
15/ε0ε̄s

′
55. β is the electromechanical coefficient

which describes the coupling strength between photons
and phonons. ε̄ is the effective dielectric constant and
the reduced piezoelectric component is given by d′15(z) =
d15(z) + d16(z)s′55/s′65. The reduced elastic moduli are
given by 1/s′55 = s66/(s55s66 − s56s65) and 1/s′65 =
−s56/(s55s66 − s56s65). For LiNbO3 [25], α = 1.6 × 108,
β = 0.5923. Note that the photon velocity is higher than
the sound velocity by four orders of magnitude and their
wavelengths set two different characteristic length scales
in this system.

The above equations can be solved for homogeneous
ferroelectric media. The general solution for each domain
can be expanded within the corresponding four eigenso-
lutions. Under the proper boundary conditions at domain
interfaces, the electric field Ēx, vibrational displacement
ūx, as well as their derivatives Ē′

x and ū′
x at interfaces can

be expressed in terms of transfer matrices for the left and
right polarized domains [24]

⎛
⎜⎜⎜⎜⎝

Ēx(L̄±, ω̄)

ūx(L̄±, ω̄)

Ē′
x(L̄±, ω̄)

ū′
x(L̄±, ω̄) ∓ Ēx(L̄±, ω̄)

⎞
⎟⎟⎟⎟⎠ =

M(L̄±, ω̄)

⎛
⎜⎜⎜⎜⎝

Ēx(0̄, ω̄)

ūx(0̄, ω̄)

Ē′
x(0̄, ω̄)

ū′
x(0̄, ω̄) ∓ Ēx(0̄, ω̄)

⎞
⎟⎟⎟⎟⎠ . (2)

ω̄ = ωL/2πcs and the detailed expressions of transfer ma-
trices are listed in Appendix A of reference [24], the trans-
fer matrix of a given superlattice can be obtained by suc-
cessive multiplications of M(L̄±, ω̄) with the prescribed
sequence. Equation (2) forms the basis to study band-gap
structure and field distributions of this system.
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Fig. 2. Polaritonic band-gaps as a function of the order l of
period-doubling superlattices. The reduced domain sizes are
L̄+ = L̄− = π.

The band-gap structure for a given period-doubling
superlattice is calculated, as customarily done, under the
periodic boundary condition. The typical band-gap struc-
ture for symmetrical setting (L̄+ = L̄− = π) is shown
in Figure 2 where horizontal axis denotes the order l
while vertical axis denotes the forbidden gap resulting
from the superlattice structure. The band-gaps instead of
pass-bands are plotted because they have potential appli-
cation in photonic devices. It should be mentioned that
the band-gap only acts on the coupled polaritons while
uncoupled acoustic modes remain propagation-like. Actu-
ally there are many big clusters in the band-gap structure
(the corresponding reason will be given below). To have a
better view of spectral pattern, only the first big cluster in
the range ω̄ = 0−2 is shown. Figure 2 shows that the gap
starts from around ω̄ = 1 for the 1st order and is splitted
into three subgaps, the middle gap persists for every order
and the upper and lower ones are then further subdivided
into three subgaps, and this process continues further on.
In other words, the spectrum shows trifurcation and self-
similarity. The number of subgaps included in the first
big cluster of the lth-order symmetrical period-doubling
piezoelectric sequence is Nl = 2l − 1. The big clusters are
separated by ω̄ = 2× integer and modes at ω̄ = 2× integer
are all propagating-like for every order.

Above trifurcation pattern in the band-gap structure
can be easily understood within the framework of plane
wave expansion method. In the first-order approximation,
the band-gap is opened in the neighborhood of reduced
frequency ω̄ = |Kml

| and the band-gap size approximately
equals (1/2)β|θ(ml)|2|Kml

|, where θ(ml) is the Fourier
component of piezoelectric modulation θ(z̄) in the super-
cell and Kml

is the reciprocal lattice vector. Thus, the
nonvanishing Fourier components θ(ml) yield directly the
band-gap position. For a supercell composed of the lth-
order symmetrical period-doubling sequence, the lattice
constant is al = 2l−12π, the corresponding reciprocal lat-

Fig. 3. Polaritonic band-gaps as a function of the order l of
period-doubling superlattices. The reduced domain sizes are
L̄+ = 0.5π, L̄− = 1.5π. One major gap is indicated.

tice vector is given by Kml
= ml/2l−1 and ml = −∞ . . .+

∞. The existence of polaritonic band-gap at ω̄ = |ml/2l−1|
is simply determined by θ(ml). Under periodic boundary
condition, for every order of period-doubling sequence, a
primary cell can be chosen to have even parity and θ(z̄)
can be expanded into cosine series. The Fourier coefficients
for the symmetrical period-doubling sequences can be cal-
culated analytically and they are listed in Appendix A.
Every Fourier coefficient includes a factor sin mlπ

2l and van-
ishes at ml = 0, 2l, 2 × 2l, 3 × 2l, . . ., the band-gap disap-
pears at ω̄ = (0, 2, 4, 6, . . .) accordingly. This is the reason
why the spectrum trifurcates and forms clusters which are
separated by even integer frequencies ω̄ = 0, 2, 4, . . .

However, such trifurcation scheme of the spectrum pat-
tern happens only in the symmetrical setting. In the asym-
metrical case (L̄+ �= L̄−), the sample length of the (l+1)th
order does not simply double that of the lth order and the
reciprocal lattice vector needs not to be half of the previ-
ous order. Thus, the cluster pattern is somewhat different,
but locations and sizes of the gaps still comply with the
Fourier coefficients qualitatively. As an example, the band-
gap structure for the asymmetrical case L̄+ = 0.5π and
L̄− = 1.5π is illustrated in Figure 3. By comparing with
the symmetrical case shown in Figure 2, one observes that
the band-gap structure still forms big clusters, but now
big clusters are separated by frequencies ω̄ = 0, 4, 8, . . .
instead of ω̄ = 0, 2, 4, . . . because the gaps for every order
disappear at ω̄ = 4, 8, 12, 16, . . . And only the indicated
major gap persists for every order unlike in the symmet-
rical case the middle subgaps persist for every order.

It is of interest to focus on those even integer frequen-
cies ω̄ = 2, 4, 6, . . . where band-gaps disappear for every
order and to take a close look at the field distributions
at these frequencies. The field distributions of electric
field and vibrational displacement are plotted in Figure 4
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Fig. 4. Field distributions of the 4th-order period-doubling superlattice at ω̄ = 2. The reduced domain sizes are L̄+ = L̄− = π.
Left panel is for coupled polaritonic branch and right panel is for uncoupled acoustic branch. (a) and (c) Electric field; (b) and
(d) Lattice displacement.

Fig. 5. Field distributions of the 6th-order period-doubling superlattice at ω̄ = 2. The other parameters and notations are the
same as in Figure 4.

for the symmetrical 4th-order period-doubling sequence
of piezoelectric superlattice (L̄+ = L̄− = π) at ω̄ = 2.
Due to the photon and phonon degrees of freedom, two
branches of field distribution exist: the left column is for
the polaritonic branch and the right column is for the de-
coupled phononic branch. The upper panel is for electric
field distribution and the lower panel is for vibrational dis-
placement distribution. It is apparent that the phononic
branch is Bloch-wave-like while the polaritonic branch of
field distribution evidently resembles the 4th-order period-
doubling sequence ABAAABABABAAABAA. This sug-
gests that the polaritonic branch has the lattice-like field
distribution and is characterized as extended. To check
whether the conclusion is universal for every order of
sequence, the field distribution for the symmetrical 6th-
order sequence at ω̄ = 2 is drawn in Figure 5. The polari-
tonic branch of field distribution still resembles the corre-
sponding sequence of the 6th order. It is well-known that
lattice-like field distribution is an icon feature of Thue-
Morse sequence and correlated disorder (clustering effect)
is responsible for its occurrence. The physical reason un-

derlying such lattice-like field distribution is embedded in
the dynamical matrices of the building blocks MA and
MB. By calculating the commutator (MA and MB) as a
function of frequency, we find that the commutator does
vanish just around ω̄ = 2. To be exact, the MA and MB

commute with each other at ω̄ = 2.000000002548 and the
frequency deviates from ω̄ = 2 obtained in zeroth order of
dynamical matrices by β/α. At this specified frequency,
MA and MB can have a pair of common eigenvectors.
One of the eigenvectors corresponds to the pure phononic
branch and thus uncoupled vibrational displacement dis-
tribution is Bloch-wave-like. The other eigenvector be-
longs to the coupled polaritonic branch, multiplying the
matrices MA and MB on the coupled eigenvector yields
the same magnitudes of electric field and vibration dis-
placement, the stress component and the phase of electric
field are somewhat different and lattice-like field distri-
bution results from such matrix properties. We calculate
the lattice-like states of higher-order piezoelectric period-
doubling sequence at this precise frequency and find that
the magnitudes of the states remain constant.
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Fig. 6. Field distributions of the 6th-order Fibonacci superlattice at ω̄ = 2. The other parameters and notations are the same
as in Figure 4.

Since the matrix properties discussed above only de-
pend on the reduced frequency and whether domain
widths for the two polarized domains are equal, the lattice-
like and Bloch-wave-like field distributions should be a
universal feature and be irrespective of the lattice se-
quence type. To check this conclusion, field distribution
of the 6th-order symmetrical Fibonacci piezoelectric se-
quence (13 domains) is given in Figure 6 for ω̄ = 2.
Field distribution of polaritonic branch in the left col-
umn does have the lattice-like field distribution pattern
and resembles the sequence BAABAABABAABA while
that of purely phononic branch in the right column has
the Bloch-wave-like behavior.

Another interesting feature worthy of investigation is
the critical states at all the low band-gap edges ω̄ =
|ml/2l−1| where strong coupling takes place between elec-
tromagnetic wave and acoustic wave. In the symmetrical
period-doubling piezoelectric superlattice, the existence of
the polaritonic band-gap around ω̄ = 1 prohibits the prop-
agation of coupled polaritonic branch, thus we focus on
the propagative branch. In Figure 7, the field distribu-
tion of electric field of the propagative branch of the 5th–
10th orders are shown and compared at the band-gap edge
ω̄ = 1. Evidently, the field distributions of all odd orders
belong to one family and those of all even orders belong
to another family, and each family forms a Cantor set.
Members of one family are similar to each other, which
becomes more apparent when the parts indicated by rect-
angles are enlarged. These states are characterized as crit-
ical. Note that the classification of field distributions into
two different families are due to the different symmetries
of period-doubling sequences in the families.

In conclusion, the propagation of electromagnetic wave
in piezoelectric period-doubling superlattice is studied
with generalized 4 × 4 transfer matrix method. For the
symmetrical setting with equal domain thickness, the
band-gap structure trifurcates under periodic boundary
condition. At frequencies corresponding to the pass-band
for every order, the phononic branch of field distribution is
Bloch-wave-like and the polaritonic branch is lattice-like,

Fig. 7. Electric field of propagative branch of the 5th–10th-
order period-doubling superlattices at ω̄ = 1. The reduced do-
main sizes are L̄+ = L̄− = π. Left panel is for odd orders and
right panel is for even orders.

which similar to those in the Thue-Morse sequence. Such
lattice-like states can be characterized as extended if the
superlattice size considered is large enough. Our study also
suggests that the lattice-like field distributions are com-
mon phenomena in piezoelectric superlattices irrespective
of lattice types and only depend on the frequency and
domain widths. At all the low band-gap edges, the crit-
ical states appear in the propagative branch which form
Cantor set separately for the even and odd-order families.
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Appendix A

Fourier coefficients θ(ml) for the lth-order symmetrical
period-doubling sequences:

θ(m1) =
1
2π

∫ 2π

0

θ(z̄) cos (m1z̄)dz̄

=
2

m1π
cosm1π sin

m1π

2
, (A.1)

θ(m2) =
1
4π

∫ 4π

0

θ(z̄) cos
(m2

2
z̄
)
dz̄

=
2

m2π
cosm2π sin

m2π

4
, (A.2)

θ(m3) =
2

m3π
cosm3π sin

m3π

8

[
1 + 2 cos

m3π

2

]
, (A.3)

θ(m4) =
2

m4π
cosm4π sin

m4π

16

[
1 + 4 cos

m4π

2
cos

m4π

4

]
,

(A.4)

θ(m5) =
2

m5π
cosm5π sin

m5π

32

×
[
1 + 2 cos

m5π

2

(
1 + 4 cos

m5π

4
cos

m5π

8

)]
,

(A.5)

θ(m6) =
2

m6π
cosm6π sin

m6π

64

[
1 + 4 cos

m6π

2
cos

m6π

4

×
(
1 + 4 cos

m6π

8
cos

m6π

16

)]
, (A.6)

θ(m7) =
2

m7π
cos(m7π) sin

m7π

128

{
1 + 2 cos

m7π

2

×
[
1 + 4 cos

m7π

4
cos

m7π

8

(
1 + 4 cos

m7π

16
cos

m7π

32

)]}
,

(A.7)

θ(m8) =
2

m8π
cosm8π sin

m8π

256

{
1 + 4 cos

m8π

2
cos

m8π

4

×
[
1 + 4 cos

m8π

8
cos

m8π

16

(
1 + 4 cos

m8π

32
cos

m8π

64

)]}
.

(A.8)

By deduction, for odd order l:

θ(ml) =
2

mlπ
cosmlπ sin

mlπ

2l

×
{
1 + 2 cos

mlπ

2

[
1 + 4 cos

mlπ

4
cos

mlπ

8

× . . .
(
1 + 4 cos

mlπ

2l−3
cos

mlπ

2l−2

)
. . .

]}
. (A.9)

For even order l:

θ(ml) =
2

mlπ
cosmlπ sin

mlπ

2l

×
{

1 + 4 cos
mlπ

2
cos

mlπ

4

[
1 + 4 cos

mlπ

8
sin

mlπ

16

× . . .
(
1 + 4 cos

mlπ

2l−3
cos

mlπ

2l−2

)
. . .

]}
. (A.10)
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